Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Eur J Med Res ; 29(1): 233, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622672

BACKGROUND: Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS: Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1ß, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS: Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1ß levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1ß release in human THP-1 cells in vitro. CONCLUSIONS: Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.


Atrial Fibrillation , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Acetates/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Lipopolysaccharides/pharmacology , Nigericin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Phytomedicine ; 117: 154922, 2023 Aug.
Article En | MEDLINE | ID: mdl-37321078

BACKGROUND: Doxorubicin (DOX) is a potent anticancer chemotherapeutic agent whose clinical application is substantially constrained by its cardiotoxicity. The pathophysiology of DOX-induced cardiotoxicity manifests as cardiomyocyte pyroptosis and inflammation. Amentoflavone (AMF) is a naturally occurring biflavone possessing anti-pyroptotic and anti-inflammatory properties. However, the mechanism through which AMF alleviates DOX-induced cardiotoxicity remains undetermined. PURPOSE: This study aimed at investigating the role of AMF in alleviating DOX-induced cardiotoxicity. STUDY DESIGN AND METHODS: To assess the in vivo effect of AMF, DOX was intraperitoneally administered into a mouse model to induce cardiotoxicity. To elucidate the underlying mechanisms, the activities of STING/NLRP3 were quantified using the NLRP3 agonist nigericin and the STING agonist amidobenzimidazole (ABZI). Primary cardiomyocytes isolated from neonatal Sprague-Dawley rats were treated with saline (vehicle) or DOX with or without AMF and/or ABZI. The echocardiogram, haemodynamics, cardiac injury markers, heart/body weight ratio, and pathological alterations were monitored; the STING/NLRP3 pathway-associated proteins were detected by western blot and cardiomyocyte pyroptosis was analysed by immunofluorescence staining of cleaved N-terminal GSDMD and scanning electron microscopy. Furthermore, we evaluated the potential of AMF in compromising the anticancer effects of DOX in human breast cancer cell lines. RESULTS: AMF substantially alleviated cardiac dysfunction and reduced heart/body weight ratio and myocardial damage in mice models of DOX-induced cardiotoxicity. AMF effectively suppressed DOX-mediated upregulation of IL-1ß, IL-18, TNF-α, and pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and cleaved N-terminal GSDMD. The levels of apoptosis-related proteins, namely Bax, cleaved caspase-3, and BCL-2 were not affected. In addition, AMF inhibited STING phosphorylation in DOX-affected hearts. Intriguingly, the administration of nigericin or ABZI dampened the cardioprotective effects of AMF. The in vitro anti-pyroptotic effect of AMF was demonstrated in attenuating the DOX-induced reduction in cardiomyocyte cell viability, upregulation of cleaved N-terminal GSDMD, and pyroptotic morphology alteration at the microstructural level. AMF exhibited a synergistic effect with DOX to reduce the viability of human breast cancer cells. CONCLUSION: AMF alleviates DOX-induced cardiotoxicity by suppressing cardiomyocyte pyroptosis and inflammation via inhibition of the STING/NLRP3 signalling pathway, thereby validating its efficacy as a cardioprotective agent.


Breast Neoplasms , Myocytes, Cardiac , Rats , Mice , Animals , Humans , Female , Pyroptosis , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/adverse effects , Nigericin/metabolism , Rats, Sprague-Dawley , Doxorubicin/pharmacology , Apoptosis Regulatory Proteins/metabolism , Inflammation/metabolism , Breast Neoplasms/pathology , Body Weight
3.
Anticancer Res ; 43(6): 2455-2465, 2023 Jun.
Article En | MEDLINE | ID: mdl-37247906

BACKGROUND/AIM: Primary effusion lymphoma (PEL) is classified as a rare non-Hodgkin's B-cell lymphoma that is caused by Kaposi's sarcoma-associated herpesvirus (KSHV); PEL cells are latently infected with KSHV. PEL is frequently resistant to conventional chemotherapies. Therefore, the development of novel therapeutic agents is urgently required. Nigericin, a H+ and K+ ionophore, possesses unique pharmacological effects. However, the effects of nigericin on PEL cells remain unknown. MATERIALS AND METHODS: We examined the cytotoxic effects of the K+ ionophores, nigericin, nonactin, and valinomycin, on various B-lymphoma cells including PEL. We also evaluated ionophore-induced changes in signaling pathways involved in KSHV-induced oncogenesis. Moreover, the effects of nigericin on mitochondrial membrane potential and viral reactivation in PEL were analyzed. RESULTS: Although the three tested ionophores inhibited the proliferation of several B-lymphoma cell lines, nigericin inhibited the proliferation of PEL cells compared to KSHV-negative cells. In PEL cells, nigericin disrupted the mitochondrial membrane potential and caused the release of cytochrome c, which triggered caspase-9-mediated apoptosis. Nigericin also induced both an increase in phosphorylated p38 MAPK and proteasomal degradation of ß-catenin. Combination treatment of nigericin with the p38 MAPK inhibitor SB203580 potentiated the cytotoxic effects towards PEL cells, compared to either compound alone. Meanwhile, nigericin did not influence viral replication in PEL cells. CONCLUSION: Nigericin induces apoptosis in PEL cells by mitochondrial dysfunction and down-regulation of Wnt/ß-catenin signaling. Thus, nigericin is a novel drug candidate for treating PEL without the risk of de novo KSHV infection.


Antineoplastic Agents , Herpesvirus 8, Human , Lymphoma, Primary Effusion , Humans , Lymphoma, Primary Effusion/drug therapy , Lymphoma, Primary Effusion/pathology , Nigericin/metabolism , Nigericin/pharmacology , Nigericin/therapeutic use , beta Catenin/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Herpesvirus 8, Human/physiology , Mitochondria , Ionophores/metabolism , Ionophores/pharmacology , Ionophores/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Int Endod J ; 56(7): 869-880, 2023 Jul.
Article En | MEDLINE | ID: mdl-37102402

AIM: Pyroptosis is a type of inflammatory cell death and is related to pulpitis and apical periodontitis. In this study, the aim was to investigate how periodontal ligament fibroblasts (PDLFs) and dental pulp cells (DPCs) respond to pyroptotic stimuli and explore whether dimethyl fumarate (DMF) could block pyroptosis in PDLFs and DPCs. METHODOLOGY: Three methods (stimulation with lipopolysaccharide [LPS] plus nigericin, poly(dA:dT) transfection and LPS transfection) were used to induce pyroptosis in PDLFs and DPCs, two types of fibroblasts related to pulpitis and apical periodontitis. THP-1 cell was used as a positive control. Afterwards, PDLFs and DPCs were treated with or without DMF before inducing pyroptosis to examine the inhibitory effect of DMF. Pyroptotic cell death was measured by lactic dehydrogenase (LDH) release assays, cell viability assays, propidium iodide (PI) staining and flow cytometry. The expression levels of cleaved gasdermin D N-terminal (GSDMD NT), caspase-1 p20, caspase-4 p31 and cleaved PARP were examined by immunoblotting. Immunofluorescence analysis was used to detect the cellular distribution of GSDMD NT. RESULTS: Periodontal ligament fibroblasts and DPCs were more sensitive to cytoplasmic LPS-induced noncanonical pyroptosis than to canonical pyroptosis induced by stimulation with LPS priming plus nigericin or by poly(dA:dT) transfection. In addition, treatment with DMF attenuated cytoplasmic LPS-induced pyroptotic cell death in PDLFs and DPCs. Mechanistically, it was shown that the expression and plasma membrane translocation of GSDMD NT were inhibited in DMF-treated PDLFs and DPCs. CONCLUSIONS: This study indicates that PDLFs and DPCs are more sensitive to cytoplasmic LPS-induced noncanonical pyroptosis and that DMF treatment blocks pyroptosis in LPS-transfected PDLFs and DPCs by targeting GSDMD, suggesting DMF might be a promising drug for the management of pulpitis and apical periodontitis.


Periapical Periodontitis , Pulpitis , Humans , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Pyroptosis , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/metabolism , Pulpitis/metabolism , Periodontal Ligament , Dental Pulp , Nigericin/metabolism , Nigericin/pharmacology , Fibroblasts , Periapical Periodontitis/metabolism
5.
Free Radic Biol Med ; 202: 97-109, 2023 06.
Article En | MEDLINE | ID: mdl-36990299

Neutrophil extracellular trap (NET) release plays a key role in many chronic disease settings, including atherosclerosis. They are critical to innate immune defence, but also contribute to disease by promoting thrombosis and inflammation. Macrophages are known to release extracellular traps or "METs", but their composition and role in pathological processes are less well defined. In this study, we examined MET release from human THP-1 macrophages exposed to model inflammatory and pathogenic stimuli, including tumour necrosis factor α (TNFα), hypochlorous acid (HOCl) and nigericin. In each case, there was release of DNA from the macrophages, as visualized by fluorescence microscopy with the cell impermeable DNA binding dye SYTOX green, consistent with MET formation. Proteomic analysis on METs released from macrophages exposed to TNFα and nigericin reveals that they are composed of linker and core histones, together with a range of cytosolic and mitochondrial proteins. These include proteins involved in DNA binding, stress responses, cytoskeletal organisation, metabolism, inflammation, anti-microbial activity, and calcium binding. Quinone oxidoreductase in particular, was highly abundant in all METs but has not been reported previously in NETs. Moreover, there was an absence of proteases in METs in contrast to NETs. Some of the MET histones, contained post-translational modifications, including acetylation and methylation of Lys but not citrullination of Arg. These data provide new insight into the potential implications of MET formation in vivo and their contributions to immune defence and pathology.


Extracellular Traps , Humans , Extracellular Traps/metabolism , Histones/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nigericin/metabolism , Proteomics , Macrophages/metabolism , DNA/metabolism , Inflammation/metabolism , Neutrophils/metabolism
6.
Toxicol Appl Pharmacol ; 462: 116424, 2023 03 01.
Article En | MEDLINE | ID: mdl-36775252

The NLRP3 inflammasome plays an important role in the pathogenesis of numerous inflammation-related diseases. Benzyl isothiocyanate (BITC) is rich in cruciferous vegetables and possesses potent antioxidant, anti-inflammatory, anti-cancer, and anti-obesogenic properties. In this study, we investigated the role of the NLRP3 inflammasome in the protection by BITC against steatohepatitis and insulin resistance. A mouse model of high-fat/cholesterol/cholic acid diet (HFCCD)-induced steatohepatitis, LPS/nigericin-stimulated primary Kupffer cells, and IL-1ß treated primary hepatocytes were used. BITC attenuated LPS/nigericin-induced activation of the NLRP3 inflammasome by enhancing protein kinase A-dependent NLRP3 ubiquitination, which increased the degradation of NLRP3 and reduced IL-1ß secretion in Kupffer cells. In hepatocytes, BITC pretreatment reversed the IL-1ß-induced decrease in the phosphorylation of IR, AKT, and GSK3ß in response to insulin. After 12 weeks of HFCCD feeding, increases in blood alanine aminotransferase (ALT) and glucose levels were ameliorated by BITC. Hepatic IL-1ß production, macrophage infiltration, and collagen expression induced by HFCCD were also mitigated by BITC. BITC suppresses activation of the NLRP3 inflammasome in Kupffer cells by enhancing the PKA-dependent ubiquitination of NLRP3, which leads to suppression of IL-1ß production and subsequently ameliorates hepatic inflammation and insulin resistance.


Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Inflammasomes/metabolism , Kupffer Cells , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/metabolism , Lipopolysaccharides/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Cholesterol/metabolism , Diet, High-Fat , Inflammation/metabolism , Interleukin-1beta/metabolism , Mice, Inbred C57BL
7.
Aging (Albany NY) ; 14(17): 6905-6916, 2022 Jul 13.
Article En | MEDLINE | ID: mdl-35832027

AIM: This work aimed to investigate the mechanism of NOX4 in promoting Kupffer cells (KCs) activation and tissue inflammatory response in acute liver injury. METHODS: Initially, the mouse KCs were cultured in vitro. Thereafter, the NOX4 overexpression plasmid was transfected into KCs to construct the overexpression cell line. Then, KCs inflammatory response was induced by LPS + Nigericin treatment. CCK-8 assay was performed to detect cell viability, flow cytometry (FCM) was conducted to measure cell apoptosis, enzyme-linked immunosorbent assay (ELISA) was performed to detect inflammatory factor levels in the culture medium, NLRP3 and ASC expression in cells was detected by immunofluorescence (IF) staining, and ROS expression was detected by the DCFH-DA probe. Furthermore, the expression levels of NLRP3, ASC and Caspase-1 proteins were detected by Western-Blot (WB) assay. Furthermore, cells were pre-treated with NOX inhibitor or NAC to suppress NOX4 expression or ROS production, aiming to further investigate the effect on KCs inflammatory response. In mouse experiments, the NOX4 knockdown mice and wild-type (WT) mice were adopted for carrying out experiments. The mouse model of ALI was constructed with LPS and D-GalN treatment. Thereafter, the changes in tissue samples were detected by H&E staining, NLRP3 expression was measured by histochemical staining, inflammatory factors in tissues were analyzed by ELISA, and the levels of NLRP3, ASC and Caspase-1 proteins in tissues were detected by WB assay. RESULTS: LPS induced KCs inflammatory response. NOX4 overexpression decreased the mouse viability and increased the apoptosis rate. The levels of inflammatory factors were up-regulated in the culture medium. In addition, ROS were activated, and the positive cell number increased. Moreover, NOX4 promoted NLRP3 activation and significantly increased the expression of NLRP3 and ASC. Pretreatment with NOX4 inhibitor or NAC antagonized the effects of NOX4 and suppressed the KCs inflammatory response. In the mouse model, NOX4 knockdown significantly suppressed the activation and inflammatory response of microglial cells in tissues, reducing the NLRP3 expression in tissues. CONCLUSION: NOX4 activates the NLRP3 inflammasome via ROS to promote inflammatory response in KCs and the release of inflammatory factors, suppressing NOX4 can improve ALI in mice, and NOX4 is promising as a new target for ALI treatment.


Inflammasomes , Kupffer Cells , Animals , Caspase 1/metabolism , Disease Models, Animal , Inflammasomes/metabolism , Kupffer Cells/metabolism , Lipopolysaccharides/pharmacology , Liver/metabolism , Mice , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/metabolism , Nigericin/pharmacology , Reactive Oxygen Species/metabolism
8.
Molecules ; 27(8)2022 Apr 12.
Article En | MEDLINE | ID: mdl-35458684

(1) Alzheimer's disease (AD) is a neurodegenerative disorder, and it is now widely accepted that neuroinflammation plays a key role in its pathogenesis. Eriodictyol (Eri) and homoeriodictyol (Hom), dihydroflavonoids extracted from a variety of plants, have been confirmed to display a relationship with neuroprotection. (2) Methods: An AD mouse model was constructed by intracerebroventricular (ICV) injection of the Aß25-35 peptide, and Eri and Hom were administered orally for 4 weeks. UPLC-MS/MS was used to determine whether Eri and Hom cross the blood-brain barrier to exert their therapeutic effects. Histological changes in the brain and levels of Aß were evaluated, and Y-maze and new object recognition experiments were conducted to assess the effects of Eri and Hom on Aß25-35-induced memory impairment in mice. The levels of oxidative stress and apoptosis in peripheral immune cells and progenitor cells in the hippocampal region were analyzed by flow cytometry and in vitro assays. Western blotting and enzyme-linked immunosorbent assays (ELISA) were used to measure the expression levels of NLRP3 inflammasome-related proteins and inflammatory factors in the brain. The effect of nigericin (an agonist of the NLRP3 inflammasome) on Eri and Hom intervention in LPS-induced N9 microglia was examined using a High Content Screening System. (3) Results: Eri and Hom reduced neuronal damage in mouse brain tissue, decreased Aß levels in the brain, downregulated oxidative stress and apoptosis levels, and improved learning and memory capacity by crossing the blood-brain barrier to exert its effects. Moreover, Eri and Hom inhibited NLRP3 inflammasome activation and ameliorated immune cell disorder. Furthermore, the effect of Eri and Hom on LPS-induced N9 microglia disappeared after the addition of nigericin to agonize NLRP3 receptors. (4) Conclusions: Eri and Hom improved Aß25-35-induced memory impairment in mice by inhibiting the NLRP3 inflammasome.


Alzheimer Disease , Inflammasomes , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Chromatography, Liquid , Disease Models, Animal , Flavanones , Flavones , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nigericin/metabolism , Tandem Mass Spectrometry
9.
Microbiol Spectr ; 10(2): e0231421, 2022 04 27.
Article En | MEDLINE | ID: mdl-35225656

Streptomyces bacteria are a key source of microbial specialized metabolites with useful applications in medicine and agriculture. In addition, some species are important plant pathogens and cause diseases such as potato scab, which reduces the quality and market value of affected potato crops. Most scab-associated Streptomyces spp. produce the phytotoxic metabolite thaxtomin A as the principal pathogenicity factor. However, recent reports have described scab-causing strains that do not produce thaxtomin A, but instead produce other phytotoxins that are thought to contribute to plant host infection and symptom development. Streptomyces sp. 11-1-2 is a highly pathogenic strain that was originally isolated from a scab symptomatic potato tuber in Newfoundland, Canada. The strain secretes one or more phytotoxic compounds of unknown identity, and it is hypothesized that these compounds serve as virulence factors for this organism. We analyzed the genome sequence of Streptomyces sp. 11-1-2 and found biosynthetic gene clusters for producing the known herbicidal compounds nigericin and geldanamycin. Phytotoxic culture extracts were analyzed using liquid chromatography-coupled tandem mass spectrometry and molecular networking, and this confirmed the production of both compounds by Streptomyces sp. 11-1-2 along with other, potentially related metabolites. The biosynthesis of both metabolites was found to be suppressed by the addition of N-acetylglucosamine to the culture medium, and pure nigericin and geldanamycin were able to exhibit phytotoxic effects against both radish seedlings and potato tuber tissue. Furthermore, the coadministration of the two compounds produced greater phytotoxic effects against potato tuber tissue than administration of each compound alone. IMPORTANCE Plant pathogens use a variety of mechanisms, including the production of phytotoxic specialized metabolites, to establish an infection of host tissue. Although thaxtomin A is considered the key phytotoxin involved in the development of potato scab disease, there is increasing evidence that other phytotoxins can play a role in disease development in some instances. In this study, we show that the highly pathogenic Streptomyces sp. 11-1-2 is capable of producing nigericin and geldanamycin, which individually and combined can cause significant damage to potato tuber tissue and radish seedlings. Our results suggest that the pathogenic phenotype of Streptomyces sp. 11-1-2 is due in part to the production of these specialized metabolites. As the biological activity of nigericin and geldanamycin is vastly different from the proposed activity of thaxtomin A against plants, the secretion of these compounds may represent a novel mechanism of plant pathogenicity exhibited by some Streptomyces species.


Solanum tuberosum , Streptomyces , Benzoquinones , Lactams, Macrocyclic , Nigericin/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Solanum tuberosum/microbiology , Streptomyces/genetics , Streptomyces/metabolism
10.
Chem Biol Interact ; 333: 109316, 2021 Jan 05.
Article En | MEDLINE | ID: mdl-33285127

Streptomyces hygroscopicus UFPEDA 3370 was fermented in submerged cultivation and the biomass extract was partitioned, obtaining a fraction purified named EB1. After purification of EB1 fraction, nigericin free acid was obtained and identified. Nigericin presented cytotoxic activity against several cancer cell lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 µM, (30.0) and 0.0138 µM (3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. In this study, nigericin was also screened both in vitro and in silico against a panel of cancer-related kinases. Nigericin was able to inhibit both JAK3 and GSK-3ß kinases in vitro and its binding affinities were mapped through the intermolecular interactions with each target in silico.


Antineoplastic Agents/pharmacology , Colorectal Neoplasms/pathology , Nigericin/pharmacology , Protein Kinase Inhibitors/pharmacology , Streptomyces/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Catalytic Domain , Cell Line, Tumor , Humans , Janus Kinase 3/antagonists & inhibitors , Janus Kinase 3/chemistry , Janus Kinase 3/metabolism , Molecular Docking Simulation , Nigericin/chemistry , Nigericin/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism
11.
Molecules ; 25(4)2020 Feb 22.
Article En | MEDLINE | ID: mdl-32098439

A method for the simultaneous determination of robenidine, halofuginone, lasalocid, monensin, nigericin, salinomycin, narasin, and maduramicin residues in eggs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The sample preparation method used a combination of liquid-liquid extraction (LLE) and solid-phase extraction (SPE) technology to extract and purify these target compounds from eggs. The target compounds were separated by gradient elution using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC). Tandem mass spectrometry was used to quantitatively and qualitatively analyze the target compounds via electrospray ionization (ESI+) and multiple reaction monitoring mode. The HPLC-MS/MS and UPLC-MS/MS methods were validated according to the requirements defined by the European Union and the Food and Drug Administration. The limits of detection and limits of quantification of the eight coccidiostats in eggs were 0.23-0.52 µg/kg and 0.82-1.73 µg/kg for HPLC-MS/MS, and 0.16-0.42 µg/kg and 0.81-1.25 µg/kg for UPLC-MS/MS, respectively. The eggs were spiked with four concentrations of the eight coccidiostats, and the HPLC-MS/MS and UPLC-MS/MS average recoveries were all higher than 71.69% and 72.26%, respectively. Compared with the HPLC-MS/MS method, utilizing UPLC-MS/MS had the advantages of low reagent consumption, a short detection time, and high recovery and precision. Finally, the HPLC-MS/MS and UPLC-MS/MS methods were successfully applied to detect eight coccidiostats in 40 eggs.


Coccidiosis/diagnosis , Eggs/parasitology , Food Analysis/methods , Poultry/parasitology , Animals , Chickens/metabolism , Chickens/parasitology , Chromatography, Liquid , Coccidiosis/metabolism , Coccidiosis/parasitology , Coccidiosis/veterinary , Humans , Lactones/isolation & purification , Lactones/metabolism , Lasalocid/isolation & purification , Lasalocid/metabolism , Liquid-Liquid Extraction , Monensin/isolation & purification , Monensin/metabolism , Nigericin/isolation & purification , Nigericin/metabolism , Piperidines/isolation & purification , Piperidines/metabolism , Pyrans/isolation & purification , Pyrans/metabolism , Quinazolinones/isolation & purification , Quinazolinones/metabolism , Robenidine/isolation & purification , Robenidine/metabolism , Tandem Mass Spectrometry , United States , United States Food and Drug Administration
12.
Int J Syst Evol Microbiol ; 69(10): 3068-3073, 2019 Oct.
Article En | MEDLINE | ID: mdl-31310199

The taxonomic position of 'Actinomadura roseorufa' LMG 30035T, a semduramicin-producing mutant of strain ATCC 53666P, which was isolated from a soil sample collected in Yamae Village, Kamamoto, Japan, was clarified in the present study using a polyphasic approach. This Gram-positive, aerobic actinomycete formed a well-developed, extensively branched, non-fragmenting substrate and aerial mycelia which differentiated into single, smooth-appearing spores. Based on analysis of nearly complete 16S rRNA gene sequence, strain LMG 30035T was found to be closely related to the type strains of Actinomadura fibrosa ATCC 49459T (98.88 %) and Actinomadura formosensis JCM 7474T (98.82 %) (pairwise similarity values in parentheses). Digital DNA-DNA hybridisation experiments revealed unambiguously that strain LMG 30035T represents a novel Actinomadura species (OrthoANIu values less than 83.1 %; dDDH values less than 27.2 % with type strains of validly named Actinomadura species). Analysis of the cell wall revealed the presence of meso-diaminopimelic acid in the peptidoglycan. The whole-cell sugars were glucose, madurose, galactose, ribose and rhamnose. The major polar lipids included phosphatidylinositol and diphosphatidylglycerol. The predominant menaquinones were MK-9(H6), MK-9(H8), MK-9(H4) and MK-9(H2). The major fatty acids were C16 : 00, 10-methyl C18 : 0, C18 : 1 ω9c and C18 : 00. The DNA G+C content of its genome was 72.5 mol%. In summary, these characteristics distinguish strain LMG 30035T from validly named species of the genus Actinomadura, and therefore, we propose to classify this strain formally as the novel species Actinomadura roseirufa sp. nov. with LMG 30035T (=CECT 9808T,=ATCC 53664T) as the type strain.


Actinobacteria/classification , Nigericin/analogs & derivatives , Phylogeny , Soil Microbiology , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Ionophores , Japan , Nigericin/metabolism , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
13.
FASEB J ; 33(4): 5793-5807, 2019 04.
Article En | MEDLINE | ID: mdl-30653357

Activation of the NACHT, leucine-rich repeat, and pyrin domains-containing protein 3 (collectively known as NLRP3) inflammasome plays a key role in host immune response, which is the first line of defense against cellular stresses and pathogen infections. However, excessive inflammasome activation damages host cells, and therefore it must be precisely controlled. Here, we discover that Cullin1 (CUL1), a key component of the Skp1-Cullin1-F-box E3 ligase, plays a critical role in controlling the NLRP3 inflammasome. CUL1 represses inflammasome assembly in cultured cells, suppresses NLRP3 function in human monocytic cell line macrophages, and attenuates inflammatory responses in mouse model. Detailed studies demonstrate that CUL1 interacts with NLRP3 and promotes NLRP3 ubiquitination, but not protein degradation, to repress the NLRP3 inflammasome activation. Moreover, upon inflammatory stimuli, including ATP and nigericin treatments, CUL1 disassociates from NLRP3 to release the repression of the NLRP3 inflammasome. Thus, this study reveals a distinct and unique mechanism underlying the control of systematic activation of the NLRP3 inflammasome.-Wan, P., Zhang, Q., Liu, W., Jia, Y., Ai, S., Wang, T., Wang, W., Pan, P., Yang, G., Xiang, Q., Huang, S., Yang, Q., Zhang, W., Liu, F., Tan, Q., Zhang, W., Wu, K., Liu, Y., Wu, J. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation.


Cullin Proteins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ubiquitination/physiology , Adenosine Triphosphate/metabolism , Animals , Cell Line , Female , HEK293 Cells , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Nigericin/metabolism , Proteolysis , THP-1 Cells , Ubiquitin-Protein Ligases/metabolism
14.
Nat Prod Res ; 33(2): 266-273, 2019 Jan.
Article En | MEDLINE | ID: mdl-29513090

The present work describes the metabolites produced by a strain identified as Streptomyces youssoufiensis, whose secondary metabolites profile has not been studied so far. The crude ethyl acetate extract was analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry, leading to the detection of the ionophoric polyethers nigericin, epinigericin, abierixin and the newly isolated grisorixin methyl ester. The presence of epimeric forms of nigericin/epinigericin and grisorixin/epigrisorixin has spurred density functional theory computational calculations. This analysis was able to provide the relative stability of the most favored epimers, setting the basis for general structural considerations applicable to several other polyethers. Both nigericin sodium salt and grisorixin methyl ester showed to affect glioblastoma stem cells proliferation in a dose-dependent manner, with a higher activity for the more lipophilic grisorixin methyl ester (GI50 values of 3.85 and 3.05 µM for VIPI and COMI human glioblastoma stem cells, respectively).


Nigericin/analogs & derivatives , Nigericin/isolation & purification , Nigericin/metabolism , Streptomyces/chemistry , Anti-Bacterial Agents/isolation & purification , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Density Functional Theory , Glioblastoma/pathology , Humans , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Stem Cells/pathology , Stereoisomerism , Tumor Cells, Cultured
15.
Elife ; 62017 06 02.
Article En | MEDLINE | ID: mdl-28574339

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA-induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a related pathway for NET induction, whereas ionophores require an alternative pathway but that NETs produced by all stimuli are proteolytically active, kill bacteria and composed mainly of chromosomal DNA. Thus, we demonstrate that NETosis occurs through several signalling mechanisms, suggesting that extrusion of NETs is important in host defence.


Extracellular Traps/metabolism , Neutrophils/immunology , Calcimycin/metabolism , Candida albicans/immunology , Granulomatous Disease, Chronic/pathology , Healthy Volunteers , Humans , Metabolic Networks and Pathways , Nigericin/metabolism , Streptococcus/immunology , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/metabolism
16.
J Immunol ; 195(12): 5718-24, 2015 Dec 15.
Article En | MEDLINE | ID: mdl-26546608

Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1ß processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1ß secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1ß secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation.


Adenosine Triphosphate/metabolism , Inflammation/immunology , Interleukin-1beta/metabolism , Macrophages/immunology , Nerve Tissue Proteins/metabolism , Nigericin/metabolism , Uric Acid/metabolism , Animals , Caspase 1/metabolism , Cells, Cultured , Deoxyglucose/metabolism , Humans , Inflammasomes/immunology , Intracellular Space , Membrane Glycoproteins , Mice, Inbred C57BL
17.
Stem Cells Transl Med ; 4(9): 1028-32, 2015 Sep.
Article En | MEDLINE | ID: mdl-26136502

UNLABELLED: Ionophore antibiotics were reported to selectively kill cancer stem cells and to overcome multidrug resistance, but mechanistic studies of the significance of drug transporters for treatment with these compounds are lacking. We applied chemosensitivity testing of well-characterized human cancer cell lines to elaborate on whether drug transporters are involved in protection from the cytotoxic effects of the ionophore antibiotics salinomycin and nigericin. Our experiments demonstrated that ionophore antibiotics were ineffective against both stem-like ovarian cancer side population cells (expressing either ABCB1 or ABCG2) and K562/Dox-H1 cells, which constitute a genetically defined model system for ABCB1 expression. Considering that cancer stem cells often express high levels of drug transporters, we deduced from our results that ionophore antibiotics are less suited to cancer stem cell-targeted treatment than previously thought. SIGNIFICANCE: Ionophore antibiotics such as salinomycin have repeatedly been shown to target cancer stem and progenitor cells from various tumor entities. Meanwhile, cancer stem cell (CSC)-selective toxicity of ionophore antibiotics seems to be a commonly accepted concept that is about to encourage their clinical testing. This study provides data that challenge the concept of targeted elimination of CSC by ionophore antibiotics. Stem-like ovarian cancer side population (SP) cells expressing high levels of ABC drug transporters are shown to largely resist the cytotoxic effects of salinomycin and nigericin. Furthermore, using a small interfering RNA-based knockdown model specific for ABCB1, this study demonstrates that ABC drug transporters are indeed causally involved in mediating protection from ionophore antibiotics. Considering that it is a hallmark of CSCs to exhibit drug resistance conferred by ABC drug transporters, it must be deduced from these results that CSCs may also be protected from ionophore antibiotics by means of drug-transporter mediated efflux.


Antineoplastic Agents/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Ionophores/metabolism , Nigericin/metabolism , Pyrans/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Biological Transport , Cell Line, Tumor , Humans , Ionophores/pharmacology , K562 Cells , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nigericin/pharmacology , Pyrans/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
18.
Int J Mol Sci ; 16(4): 8102-9, 2015 Apr 10.
Article En | MEDLINE | ID: mdl-25867480

Emodin, an active constituent of oriental herbs, is widely used to treat allergy, inflammation, and other symptoms. This study provides the scientific basis for the anti-inflammasome effects of emodin on both in vitro and in vivo experimental models. Bone marrow-derived macrophages were used to study the effects of emodin on inflammasome activation by using inflammasome inducers such as ATP, nigericin, and silica crystals. The lipopolysaccharide (LPS)-induced endotoxin shock model was employed to study the effect of emodin on in vivo efficacy. Emodin treatment attenuated interleukin (IL)-1ß secretion via the inhibition of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation induced by ATP, nigericin, and silica crystals. Further, emodin ameliorated the severity of NLRP3 inflammasome-mediated symptoms in LPS-induced endotoxin mouse models. This study is the first to reveal mechanism-based evidence, especially with respect to regulation of inflammasome activation, substantiating traditional claims of emodin in the treatment of inflammation-related disorders.


Anti-Inflammatory Agents/pharmacology , Emodin/pharmacology , Inflammasomes/metabolism , Inflammation/drug therapy , Adenosine Triphosphate/metabolism , Animals , Carrier Proteins/metabolism , Endotoxins/pharmacology , Inflammation/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Nigericin/metabolism , Oxygenases/metabolism , Silicon Dioxide/metabolism
19.
J Pharm Pharmacol ; 65(7): 970-9, 2013 Jul.
Article En | MEDLINE | ID: mdl-23738724

OBJECTIVES: Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and substrate specificity of the transporter. METHODS: We studied the uptake of [(14) C]Gly-Sar from basolateral solution into Caco-2 cell monolayers grown for 17-22 days on permeable supports, at a range of basolateral pH values. KEY FINDINGS: Basolateral Gly-Sar uptake was pH dependent, with a maximal uptake rate at a basolateral pH of 5.5. Uptake of Gly-Sar decreased in the presence of the protonophore nigericin, indicating that the uptake was proton-coupled. The uptake was saturable, with a maximal flux (Vmax ) of 408 ± 71, 307 ± 25 and 188 ± 19 pmol/cm(2) /min (mean ± S.E., n = 3) at basolateral pH 5.0, 6.0 and 7.4, respectively. The compounds Gly-Asp, Glu-Phe-Tyr, Gly-Glu-Gly, Gly-Phe-Gly, lidocaine and, to a smaller degree, para-aminohippuric acid were all shown to inhibit the basolateral uptake of Gly-Sar. CONCLUSIONS: The study showed that basolateral Gly-Sar transport in the intestinal cell line Caco-2 is proton-coupled. The inhibitor profile indicated that the transporter has broad substrate specificity.


Dipeptides/metabolism , Intestinal Mucosa/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Caco-2 Cells , Humans , Hydrogen-Ion Concentration , Nigericin/metabolism , Substrate Specificity
20.
Cell Microbiol ; 13(6): 897-912, 2011 Jun.
Article En | MEDLINE | ID: mdl-21501358

Malaria parasites reside in human erythrocytes within a parasitophorous vacuole. The parasites are transmitted from the human to the mosquito by the uptake of intraerythrocytic gametocytes during a blood meal, which in the midgut become activated by external stimuli and subsequently egress from the enveloping erythrocyte. Gametocyte egress is a crucial step for the parasite to prepare for fertilization, but the molecular mechanisms of egress are not well understood. Via electron microscopy, we show that Plasmodium falciparum gametocytes exit the erythrocyte by an inside-out type of egress. The parasitophorous vacuole membrane (PVM) ruptures at multiple sites within less than a minute following activation, a process that requires a temperature drop and parasite contact with xanthurenic acid. PVM rupture can also be triggered by the ionophore nigericin and is sensitive to the cysteine protease inhibitor E-64d. Following PVM rupture the subpellicular membrane begins to disintegrate. This membrane is specific to malaria gametocytes, and disintegration is impaired by the aspartic protease inhibitor EPNP and the cysteine/serine protease inhibitor TLCK. Approximately 15 min post activation, the erythrocyte membrane ruptures at a single breaking point, which can be inhibited by inhibitors TLCK and TPCK. In all cases inhibitor treatment results in interrupted gametogenesis.


Culicidae/parasitology , Erythrocytes/parasitology , Plasmodium falciparum/growth & development , Animals , Epoxy Compounds/metabolism , Erythrocytes/ultrastructure , Humans , Intracellular Membranes/ultrastructure , Leucine/analogs & derivatives , Leucine/metabolism , Microscopy, Electron , Nigericin/metabolism , Nitrophenols/metabolism , Plasmodium falciparum/ultrastructure , Temperature , Tosyllysine Chloromethyl Ketone/metabolism , Vacuoles/parasitology , Vacuoles/ultrastructure , Xanthurenates/metabolism
...